3.3.37 \(\int \frac {1}{(a+b \sec (c+d x)) \sqrt {e \sin (c+d x)}} \, dx\) [237]

Optimal. Leaf size=370 \[ -\frac {b \text {ArcTan}\left (\frac {\sqrt {a} \sqrt {e \sin (c+d x)}}{\sqrt [4]{a^2-b^2} \sqrt {e}}\right )}{\sqrt {a} \left (a^2-b^2\right )^{3/4} d \sqrt {e}}-\frac {b \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {e \sin (c+d x)}}{\sqrt [4]{a^2-b^2} \sqrt {e}}\right )}{\sqrt {a} \left (a^2-b^2\right )^{3/4} d \sqrt {e}}+\frac {2 F\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{a d \sqrt {e \sin (c+d x)}}+\frac {b^2 \Pi \left (\frac {2 a}{a-\sqrt {a^2-b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{a \left (a^2-b^2-a \sqrt {a^2-b^2}\right ) d \sqrt {e \sin (c+d x)}}+\frac {b^2 \Pi \left (\frac {2 a}{a+\sqrt {a^2-b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{a \left (a^2-b^2+a \sqrt {a^2-b^2}\right ) d \sqrt {e \sin (c+d x)}} \]

[Out]

-b*arctan(a^(1/2)*(e*sin(d*x+c))^(1/2)/(a^2-b^2)^(1/4)/e^(1/2))/(a^2-b^2)^(3/4)/d/a^(1/2)/e^(1/2)-b*arctanh(a^
(1/2)*(e*sin(d*x+c))^(1/2)/(a^2-b^2)^(1/4)/e^(1/2))/(a^2-b^2)^(3/4)/d/a^(1/2)/e^(1/2)-2*(sin(1/2*c+1/4*Pi+1/2*
d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticF(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2))*sin(d*x+c)^(1/2)/a/d/(e*s
in(d*x+c))^(1/2)-b^2*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticPi(cos(1/2*c+1/4*Pi
+1/2*d*x),2*a/(a-(a^2-b^2)^(1/2)),2^(1/2))*sin(d*x+c)^(1/2)/a/d/(a^2-b^2-a*(a^2-b^2)^(1/2))/(e*sin(d*x+c))^(1/
2)-b^2*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticPi(cos(1/2*c+1/4*Pi+1/2*d*x),2*a/
(a+(a^2-b^2)^(1/2)),2^(1/2))*sin(d*x+c)^(1/2)/a/d/(a^2-b^2+a*(a^2-b^2)^(1/2))/(e*sin(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.55, antiderivative size = 370, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 11, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.440, Rules used = {3957, 2946, 2721, 2720, 2781, 2886, 2884, 335, 218, 214, 211} \begin {gather*} -\frac {b \text {ArcTan}\left (\frac {\sqrt {a} \sqrt {e \sin (c+d x)}}{\sqrt {e} \sqrt [4]{a^2-b^2}}\right )}{\sqrt {a} d \sqrt {e} \left (a^2-b^2\right )^{3/4}}-\frac {b \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {e \sin (c+d x)}}{\sqrt {e} \sqrt [4]{a^2-b^2}}\right )}{\sqrt {a} d \sqrt {e} \left (a^2-b^2\right )^{3/4}}+\frac {b^2 \sqrt {\sin (c+d x)} \Pi \left (\frac {2 a}{a-\sqrt {a^2-b^2}};\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right )}{a d \left (-a \sqrt {a^2-b^2}+a^2-b^2\right ) \sqrt {e \sin (c+d x)}}+\frac {b^2 \sqrt {\sin (c+d x)} \Pi \left (\frac {2 a}{a+\sqrt {a^2-b^2}};\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right )}{a d \left (a \sqrt {a^2-b^2}+a^2-b^2\right ) \sqrt {e \sin (c+d x)}}+\frac {2 \sqrt {\sin (c+d x)} F\left (\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right )}{a d \sqrt {e \sin (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((a + b*Sec[c + d*x])*Sqrt[e*Sin[c + d*x]]),x]

[Out]

-((b*ArcTan[(Sqrt[a]*Sqrt[e*Sin[c + d*x]])/((a^2 - b^2)^(1/4)*Sqrt[e])])/(Sqrt[a]*(a^2 - b^2)^(3/4)*d*Sqrt[e])
) - (b*ArcTanh[(Sqrt[a]*Sqrt[e*Sin[c + d*x]])/((a^2 - b^2)^(1/4)*Sqrt[e])])/(Sqrt[a]*(a^2 - b^2)^(3/4)*d*Sqrt[
e]) + (2*EllipticF[(c - Pi/2 + d*x)/2, 2]*Sqrt[Sin[c + d*x]])/(a*d*Sqrt[e*Sin[c + d*x]]) + (b^2*EllipticPi[(2*
a)/(a - Sqrt[a^2 - b^2]), (c - Pi/2 + d*x)/2, 2]*Sqrt[Sin[c + d*x]])/(a*(a^2 - b^2 - a*Sqrt[a^2 - b^2])*d*Sqrt
[e*Sin[c + d*x]]) + (b^2*EllipticPi[(2*a)/(a + Sqrt[a^2 - b^2]), (c - Pi/2 + d*x)/2, 2]*Sqrt[Sin[c + d*x]])/(a
*(a^2 - b^2 + a*Sqrt[a^2 - b^2])*d*Sqrt[e*Sin[c + d*x]])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2781

Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> With[{q = Rt[
-a^2 + b^2, 2]}, Dist[-a/(2*q), Int[1/(Sqrt[g*Cos[e + f*x]]*(q + b*Cos[e + f*x])), x], x] + (Dist[b*(g/f), Sub
st[Int[1/(Sqrt[x]*(g^2*(a^2 - b^2) + b^2*x^2)), x], x, g*Cos[e + f*x]], x] - Dist[a/(2*q), Int[1/(Sqrt[g*Cos[e
 + f*x]]*(q - b*Cos[e + f*x])), x], x])] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2946

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]))/((a_) + (b_.)*sin[(e_.) + (
f_.)*(x_)]), x_Symbol] :> Dist[d/b, Int[(g*Cos[e + f*x])^p, x], x] + Dist[(b*c - a*d)/b, Int[(g*Cos[e + f*x])^
p/(a + b*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rule 3957

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[(g*Co
s[e + f*x])^p*((b + a*Sin[e + f*x])^m/Sin[e + f*x]^m), x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {1}{(a+b \sec (c+d x)) \sqrt {e \sin (c+d x)}} \, dx &=-\int \frac {\cos (c+d x)}{(-b-a \cos (c+d x)) \sqrt {e \sin (c+d x)}} \, dx\\ &=\frac {\int \frac {1}{\sqrt {e \sin (c+d x)}} \, dx}{a}+\frac {b \int \frac {1}{(-b-a \cos (c+d x)) \sqrt {e \sin (c+d x)}} \, dx}{a}\\ &=\frac {b^2 \int \frac {1}{\sqrt {e \sin (c+d x)} \left (\sqrt {a^2-b^2}-a \sin (c+d x)\right )} \, dx}{2 a \sqrt {a^2-b^2}}+\frac {b^2 \int \frac {1}{\sqrt {e \sin (c+d x)} \left (\sqrt {a^2-b^2}+a \sin (c+d x)\right )} \, dx}{2 a \sqrt {a^2-b^2}}+\frac {(b e) \text {Subst}\left (\int \frac {1}{\sqrt {x} \left (\left (-a^2+b^2\right ) e^2+a^2 x^2\right )} \, dx,x,e \sin (c+d x)\right )}{d}+\frac {\sqrt {\sin (c+d x)} \int \frac {1}{\sqrt {\sin (c+d x)}} \, dx}{a \sqrt {e \sin (c+d x)}}\\ &=\frac {2 F\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{a d \sqrt {e \sin (c+d x)}}+\frac {(2 b e) \text {Subst}\left (\int \frac {1}{\left (-a^2+b^2\right ) e^2+a^2 x^4} \, dx,x,\sqrt {e \sin (c+d x)}\right )}{d}+\frac {\left (b^2 \sqrt {\sin (c+d x)}\right ) \int \frac {1}{\sqrt {\sin (c+d x)} \left (\sqrt {a^2-b^2}-a \sin (c+d x)\right )} \, dx}{2 a \sqrt {a^2-b^2} \sqrt {e \sin (c+d x)}}+\frac {\left (b^2 \sqrt {\sin (c+d x)}\right ) \int \frac {1}{\sqrt {\sin (c+d x)} \left (\sqrt {a^2-b^2}+a \sin (c+d x)\right )} \, dx}{2 a \sqrt {a^2-b^2} \sqrt {e \sin (c+d x)}}\\ &=\frac {2 F\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{a d \sqrt {e \sin (c+d x)}}+\frac {b^2 \Pi \left (\frac {2 a}{a-\sqrt {a^2-b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{a \left (a^2-b^2-a \sqrt {a^2-b^2}\right ) d \sqrt {e \sin (c+d x)}}+\frac {b^2 \Pi \left (\frac {2 a}{a+\sqrt {a^2-b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{a \sqrt {a^2-b^2} \left (a+\sqrt {a^2-b^2}\right ) d \sqrt {e \sin (c+d x)}}-\frac {b \text {Subst}\left (\int \frac {1}{\sqrt {a^2-b^2} e-a x^2} \, dx,x,\sqrt {e \sin (c+d x)}\right )}{\sqrt {a^2-b^2} d}-\frac {b \text {Subst}\left (\int \frac {1}{\sqrt {a^2-b^2} e+a x^2} \, dx,x,\sqrt {e \sin (c+d x)}\right )}{\sqrt {a^2-b^2} d}\\ &=-\frac {b \tan ^{-1}\left (\frac {\sqrt {a} \sqrt {e \sin (c+d x)}}{\sqrt [4]{a^2-b^2} \sqrt {e}}\right )}{\sqrt {a} \left (a^2-b^2\right )^{3/4} d \sqrt {e}}-\frac {b \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {e \sin (c+d x)}}{\sqrt [4]{a^2-b^2} \sqrt {e}}\right )}{\sqrt {a} \left (a^2-b^2\right )^{3/4} d \sqrt {e}}+\frac {2 F\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{a d \sqrt {e \sin (c+d x)}}+\frac {b^2 \Pi \left (\frac {2 a}{a-\sqrt {a^2-b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{a \left (a^2-b^2-a \sqrt {a^2-b^2}\right ) d \sqrt {e \sin (c+d x)}}+\frac {b^2 \Pi \left (\frac {2 a}{a+\sqrt {a^2-b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{a \sqrt {a^2-b^2} \left (a+\sqrt {a^2-b^2}\right ) d \sqrt {e \sin (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.
time = 14.00, size = 546, normalized size = 1.48 \begin {gather*} \frac {2 \left (b+a \sqrt {\cos ^2(c+d x)}\right ) \sqrt {\sin (c+d x)} \left (\frac {b \left (-2 \text {ArcTan}\left (1-\frac {\sqrt {2} \sqrt {a} \sqrt {\sin (c+d x)}}{\sqrt [4]{-a^2+b^2}}\right )+2 \text {ArcTan}\left (1+\frac {\sqrt {2} \sqrt {a} \sqrt {\sin (c+d x)}}{\sqrt [4]{-a^2+b^2}}\right )-\log \left (\sqrt {-a^2+b^2}-\sqrt {2} \sqrt {a} \sqrt [4]{-a^2+b^2} \sqrt {\sin (c+d x)}+a \sin (c+d x)\right )+\log \left (\sqrt {-a^2+b^2}+\sqrt {2} \sqrt {a} \sqrt [4]{-a^2+b^2} \sqrt {\sin (c+d x)}+a \sin (c+d x)\right )\right )}{4 \sqrt {2} \sqrt {a} \left (-a^2+b^2\right )^{3/4}}-\frac {5 a \left (a^2-b^2\right ) F_1\left (\frac {1}{4};-\frac {1}{2},1;\frac {5}{4};\sin ^2(c+d x),\frac {a^2 \sin ^2(c+d x)}{a^2-b^2}\right ) \sqrt {\cos ^2(c+d x)} \sqrt {\sin (c+d x)}}{\left (-a^2+b^2+a^2 \sin ^2(c+d x)\right ) \left (5 \left (a^2-b^2\right ) F_1\left (\frac {1}{4};-\frac {1}{2},1;\frac {5}{4};\sin ^2(c+d x),\frac {a^2 \sin ^2(c+d x)}{a^2-b^2}\right )+2 \left (2 a^2 F_1\left (\frac {5}{4};-\frac {1}{2},2;\frac {9}{4};\sin ^2(c+d x),\frac {a^2 \sin ^2(c+d x)}{a^2-b^2}\right )+\left (-a^2+b^2\right ) F_1\left (\frac {5}{4};\frac {1}{2},1;\frac {9}{4};\sin ^2(c+d x),\frac {a^2 \sin ^2(c+d x)}{a^2-b^2}\right )\right ) \sin ^2(c+d x)\right )}\right )}{d (b+a \cos (c+d x)) \sqrt {e \sin (c+d x)}} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[1/((a + b*Sec[c + d*x])*Sqrt[e*Sin[c + d*x]]),x]

[Out]

(2*(b + a*Sqrt[Cos[c + d*x]^2])*Sqrt[Sin[c + d*x]]*((b*(-2*ArcTan[1 - (Sqrt[2]*Sqrt[a]*Sqrt[Sin[c + d*x]])/(-a
^2 + b^2)^(1/4)] + 2*ArcTan[1 + (Sqrt[2]*Sqrt[a]*Sqrt[Sin[c + d*x]])/(-a^2 + b^2)^(1/4)] - Log[Sqrt[-a^2 + b^2
] - Sqrt[2]*Sqrt[a]*(-a^2 + b^2)^(1/4)*Sqrt[Sin[c + d*x]] + a*Sin[c + d*x]] + Log[Sqrt[-a^2 + b^2] + Sqrt[2]*S
qrt[a]*(-a^2 + b^2)^(1/4)*Sqrt[Sin[c + d*x]] + a*Sin[c + d*x]]))/(4*Sqrt[2]*Sqrt[a]*(-a^2 + b^2)^(3/4)) - (5*a
*(a^2 - b^2)*AppellF1[1/4, -1/2, 1, 5/4, Sin[c + d*x]^2, (a^2*Sin[c + d*x]^2)/(a^2 - b^2)]*Sqrt[Cos[c + d*x]^2
]*Sqrt[Sin[c + d*x]])/((-a^2 + b^2 + a^2*Sin[c + d*x]^2)*(5*(a^2 - b^2)*AppellF1[1/4, -1/2, 1, 5/4, Sin[c + d*
x]^2, (a^2*Sin[c + d*x]^2)/(a^2 - b^2)] + 2*(2*a^2*AppellF1[5/4, -1/2, 2, 9/4, Sin[c + d*x]^2, (a^2*Sin[c + d*
x]^2)/(a^2 - b^2)] + (-a^2 + b^2)*AppellF1[5/4, 1/2, 1, 9/4, Sin[c + d*x]^2, (a^2*Sin[c + d*x]^2)/(a^2 - b^2)]
)*Sin[c + d*x]^2))))/(d*(b + a*Cos[c + d*x])*Sqrt[e*Sin[c + d*x]])

________________________________________________________________________________________

Maple [A]
time = 0.25, size = 530, normalized size = 1.43

method result size
default \(\frac {\frac {b e \left (\frac {e^{2} \left (a^{2}-b^{2}\right )}{a^{2}}\right )^{\frac {1}{4}} \ln \left (\frac {\sqrt {e \sin \left (d x +c \right )}+\left (\frac {e^{2} \left (a^{2}-b^{2}\right )}{a^{2}}\right )^{\frac {1}{4}}}{\sqrt {e \sin \left (d x +c \right )}-\left (\frac {e^{2} \left (a^{2}-b^{2}\right )}{a^{2}}\right )^{\frac {1}{4}}}\right )}{-2 a^{2} e^{2}+2 b^{2} e^{2}}+\frac {b e \left (\frac {e^{2} \left (a^{2}-b^{2}\right )}{a^{2}}\right )^{\frac {1}{4}} \arctan \left (\frac {\sqrt {e \sin \left (d x +c \right )}}{\left (\frac {e^{2} \left (a^{2}-b^{2}\right )}{a^{2}}\right )^{\frac {1}{4}}}\right )}{-a^{2} e^{2}+b^{2} e^{2}}-\frac {\sqrt {-\sin \left (d x +c \right )+1}\, \sqrt {2 \sin \left (d x +c \right )+2}\, \left (\sqrt {\sin }\left (d x +c \right )\right ) \left (2 \EllipticF \left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right ) \left (a^{2}-b^{2}\right )^{\frac {3}{2}}-2 \EllipticF \left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right ) \sqrt {a^{2}-b^{2}}\, a^{2}+\EllipticPi \left (\sqrt {-\sin \left (d x +c \right )+1}, -\frac {a}{\sqrt {a^{2}-b^{2}}-a}, \frac {\sqrt {2}}{2}\right ) \sqrt {a^{2}-b^{2}}\, b^{2}+\EllipticPi \left (\sqrt {-\sin \left (d x +c \right )+1}, -\frac {a}{\sqrt {a^{2}-b^{2}}-a}, \frac {\sqrt {2}}{2}\right ) a \,b^{2}+\EllipticPi \left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {a}{a +\sqrt {a^{2}-b^{2}}}, \frac {\sqrt {2}}{2}\right ) \sqrt {a^{2}-b^{2}}\, b^{2}-\EllipticPi \left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {a}{a +\sqrt {a^{2}-b^{2}}}, \frac {\sqrt {2}}{2}\right ) a \,b^{2}\right )}{2 a \sqrt {a^{2}-b^{2}}\, \left (\sqrt {a^{2}-b^{2}}-a \right ) \left (a +\sqrt {a^{2}-b^{2}}\right ) \cos \left (d x +c \right ) \sqrt {e \sin \left (d x +c \right )}}}{d}\) \(530\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*sec(d*x+c))/(e*sin(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

(1/2*b*e*(e^2*(a^2-b^2)/a^2)^(1/4)/(-a^2*e^2+b^2*e^2)*ln(((e*sin(d*x+c))^(1/2)+(e^2*(a^2-b^2)/a^2)^(1/4))/((e*
sin(d*x+c))^(1/2)-(e^2*(a^2-b^2)/a^2)^(1/4)))+b*e*(e^2*(a^2-b^2)/a^2)^(1/4)/(-a^2*e^2+b^2*e^2)*arctan((e*sin(d
*x+c))^(1/2)/(e^2*(a^2-b^2)/a^2)^(1/4))-1/2/a*(-sin(d*x+c)+1)^(1/2)*(2*sin(d*x+c)+2)^(1/2)*sin(d*x+c)^(1/2)*(2
*EllipticF((-sin(d*x+c)+1)^(1/2),1/2*2^(1/2))*(a^2-b^2)^(3/2)-2*EllipticF((-sin(d*x+c)+1)^(1/2),1/2*2^(1/2))*(
a^2-b^2)^(1/2)*a^2+EllipticPi((-sin(d*x+c)+1)^(1/2),-a/((a^2-b^2)^(1/2)-a),1/2*2^(1/2))*(a^2-b^2)^(1/2)*b^2+El
lipticPi((-sin(d*x+c)+1)^(1/2),-a/((a^2-b^2)^(1/2)-a),1/2*2^(1/2))*a*b^2+EllipticPi((-sin(d*x+c)+1)^(1/2),a/(a
+(a^2-b^2)^(1/2)),1/2*2^(1/2))*(a^2-b^2)^(1/2)*b^2-EllipticPi((-sin(d*x+c)+1)^(1/2),a/(a+(a^2-b^2)^(1/2)),1/2*
2^(1/2))*a*b^2)/(a^2-b^2)^(1/2)/((a^2-b^2)^(1/2)-a)/(a+(a^2-b^2)^(1/2))/cos(d*x+c)/(e*sin(d*x+c))^(1/2))/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sec(d*x+c))/(e*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

e^(-1/2)*integrate(1/((b*sec(d*x + c) + a)*sqrt(sin(d*x + c))), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sec(d*x+c))/(e*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {e \sin {\left (c + d x \right )}} \left (a + b \sec {\left (c + d x \right )}\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sec(d*x+c))/(e*sin(d*x+c))**(1/2),x)

[Out]

Integral(1/(sqrt(e*sin(c + d*x))*(a + b*sec(c + d*x))), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sec(d*x+c))/(e*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(1/((b*sec(d*x + c) + a)*sqrt(e*sin(d*x + c))), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\cos \left (c+d\,x\right )}{\sqrt {e\,\sin \left (c+d\,x\right )}\,\left (b+a\,\cos \left (c+d\,x\right )\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((e*sin(c + d*x))^(1/2)*(a + b/cos(c + d*x))),x)

[Out]

int(cos(c + d*x)/((e*sin(c + d*x))^(1/2)*(b + a*cos(c + d*x))), x)

________________________________________________________________________________________